
LEARNER GOALS:
- understand what an algorithm is vs LLM
- understand what users need to work with and understand them
- know what scares people about them and machine learning
- what to do when they go wrong
- how to think about liability

hi everyone, good afternoon. what a couple of days, huh? thanks for sticking around 
long enough to listen to me. 

let's talk trust in algorithms, and what we can do to keep people comfortable. 

i'm calling this one — _it came from the black box!_
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if there's one thing i want to leave you with today, it's this: don't be alastair crowley.
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aleister crowely was born in 1875 and pretty quickly decided that everything about 
his life had to changed. 

he rebelled against his parents, the institutions around him, and especially his 
religion. 

his mother called him "a beast," a moniker he adopted and became the self-styled 
"Great Beast 666."
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eveyone else called him "the wickedest man in the world.”

he created the religion of thelema that had one law: "DO WHAT THOU WILT."

he bent people to his will, breaking apart marriages so he could sleep with whatever 
woman he wanted — whether they wanted it or not. 
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when mountaineering, he — that’s him second from left — and his climbing group 
were trapped in a storm. 

crowley left them to die — the rumor is that he was drinking tea while they begged 
him for help that he refused to provide.

5



one of his followers drank cat's blood. her husband later died when he drank from 
polluted water — either because he was forced to or because it was all he had access 
to.

many of the stories about crowley were probably overblown — it's unlikely he 
sacrificed children — 
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but the crux of it is crowley's embrace and usage of the occult were what gave him 
his power.
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not in like, a magic way, though. 

what's so insidious about "the occult" can be found in the meaning of the word itself

8



— it's _hidden_. 

if you have an occult diagnosis at the doctor's office, it's something that doesn't have 
a lot of signs or symptoms.
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cut off  from view by interposing something.
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crawley was so dangerous because he was the only one who could interpret the 
meaning of the hidden supernatural — his followers had to trust him completely with 
no proof.

and that's dangerous! it leads to systems that are rife for abuse. 

it leads to situations where people are making decisions based on nothing more than 
what they believe about a system, not what's _true_ about it. 

it leads to situations where you drink cat's blood, because this strange, demon-
obsessed man told you to.
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if your users ever get into a situation where they say "i don't know how it works, but i 
keep using it" — 

Congratulations, you have entered the realm of the occult. prepare for a sacrifice, 
either in the form of a patient or a lawsuit.
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trust without knowledge is faith. 

and while that's a fine thing, we don't build medical devices to operate on faith.
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the opposite of the occult — what reveals hidden things — is information and 
understanding. 

our job as designers is to provide our users the knowledge they need to understand 
how an algorithm works. 

even if they're not working with it, it is _impacting_ the patient and thus their 
responsibility. 

i'm really passionate about this, and let me tell you a little about who i am and why 
i'm here today.
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so — hellooooo. my name is andrew lilja, and i'm a principal human factors design 
engineer at medtronic. 

i work in the cardiac rhythm group, which means it's my job to build things that keep 
people alive when their hearts don't want to anymore. 

we do this in a whole bunch of ways, but i'm mostly responsible for the ones 
involving putting a bunch of electricty into them.
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this might come as a surprise, but hearts are actually very good at beating.
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this might come as a surprise, but hearts are actually very good at beating.

you have a little part of it right here
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called the atrioventricular node that helps organize electrical signals from the brain 
and turn them into heartbeats. 

and it's so good at this that you can actually remove a heart from the body 
_completely_ and it will still beat on its own at a steady 60 beats per second.

but sometimes things go wrong. 

there might be physiological issues with the nerves or the muscles, 

there might be something wrong with the connection between the brain and the 
heart — 

but most of the time, the outcome is that the heart doesn't beat in the right way. and 
since we are electrical creatures, 
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you can use a little jolt of electricity to make the heart beat again. do it at a steady 
rate, and people can stand up and walk and be alive again.

and this works really great for about five minutes. 

then the patient needs to run, or their heart starts beating on its own again, or their 
heart decides to really throw us for a loop and go into a fatal arrhythmia. 

these are things our basic pacemaker needs to expect and interpret, and we use a lot 
of algorithms to do that.
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but — let's take a second to get our terminology straight. 

there is a lot of talk these days about "artificial intelligence." 

this so-called AI definitely relates to algorithms and what we work with, but let's get 
clear about what all these things are.

personally, i hate the term AI. 
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it's so generic and general that it's practically useless to discuss with. 
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it's so generic and general that it's practically useless to discuss with. 

what most people are thinking about when they say "AI" is what's called a "large 
language model," 

which at their very core are statistical models that have been given enough data so 
they can make good guesses about what words or pixels belong next to each other. 

there are many methods of doing this, but the common demoninator between all of 
them is that they are creating _statistical models_ and then using that to take novel 
input and produce things that are similar.
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you feed it a bunch of images that have been tagged with things like "cat" and "box" 
and "very adorable" 

and then when you give it the words "draw me an adorable cat" it can spit one out 
for you.

 the more pictures you gave it during "training" and the better your descriptions of 
them were, the more options you have down the line.
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so those are LLMs. they're a subgroup of a field called "machine learning," which is 
exactly what it sounds like. 

but all of them are basically black boxes. you understand the model — how they were 
built — but you have no insight into _why_ it's making the decisions it did. 

they're just a huge network of statistical weights — there aren't any rules that you 
can look at and understand. 
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compare this to an _algorithm_, which is a set of explicit, described rules that 
produce _predictable_ outcomes. 

that's the major difference: you can predict the precise outcome of an algorithm 
because you wrote the rules to make it work. 

given the same input, you can predict what the output will be. 

if you get an incorrect or weird output, you can go to the algorithm and figure out 
what happened and fix it.
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an LLM — and ML generally — can create surprises. 

if it does something you didn't expect, you can't figure out why. all you know is that 
the group of inputs you gave it turned into that outputs. 

if it came out a wrong or unexpected way, you can't know why. maybe your training 
data was polluted. maybe your input was bad. you don't know! you can make some 
guesses, but you don't know why.
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it's an occult technology. 

you just have to trust that what goes in is going to give the correct output. 

and sometimes that's what you want! if you want something that's novel and 
entertaining, an LLM may be just what you're looking for.

but if you're using this occult AI black box to determine when a patient needs a 
pacemaker beat, or to develop care plans, or do anything at all that could result in 
harm — don't do it.

use an algorithm instead.
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The crux is that one is unknowable, and the other is not. And if your users know how 
it works, they can trust how it works.

You want your users to know. You want them to be able to make predictions about 
outcomes.

When they understand how it works, they can use it in their work. When it stops 
being mysterious and confusing, it starts to become usable.
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Things that are unknown are scary. You don’t know what’s happening, why the 
algorithm is doing something, how it can be controlled or managed or used.
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But the minute your turn the lights of understanding on, you get it. Its purpose 
becomes understood and you can figure out how to leverage it. It might even become 
as boring as an office hallway.

It stops being occult and starts being understandable.
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so if the opposite of the occult is the known, the visible — 

how do you do that? how do you build trust in something?

i think there are two main ways we do it: 
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via feedback and revealing the right complexities. 

and your job is to use those to make sure your users understand how the algorithm 
works, and how they can use it in their workflows.
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let's talk feedback first, because i think it's simpler. 

feedback is so fundamental to interfaces that don norman literally defined it. 
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i want to take this one step further and add that it's not just letting you know that the 
system _is_ working on your request, 

it's also telling you _what the system is doing_ with your request. it's saving, it's 
searching, _whatever._
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when it comes to an algorithm, this is about predictability. 

you put something into the algorithm and it comes out giving you an answer you 
expected — or at least within the range of spaces that you expected it to come from. 

You need to show your user what’s going on, how those inputs are being interpreted.

Your user sees flat paper going in, something happens, and then a box comes out — 
every single time. They use that feedback to build a mental model of what’s going on 
inside the algorithm. 

It lets them leverage the algorithm more effectively, too. When they see what comes 
out, they can learn how to put better things into it so they can get better outputs.

You need to do this in your interfaces! You need to reveal what the output is.
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you know, one of the things we do as designers and researchers is define a "problem 
space" — 

given all the constraints and stakeholders and inputs to a problem, here's the things 
the problem could be. 

the problem we'll solve comes from this space.
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i'd like you think of the reverse: and algorithmic "answer space" — 

given the inputs and all the rules of the algorithm, 

you know what a likely outcome from the algorithm is going to be. your users will be 
developing this all the time. 

every time they get an output back out, it will further define this answer space.
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i'll spare you from the details right now, but what's happening is that your users are 
developing mental models of how the algorithm works. 

and you simply cannot stop them from doing that. our brains will do it with just about 
anything. 

we are pattern-finding machines, which is why you look at this picture and see a face 
and not a pile of vegetables.

Your users will grab onto any scrap of feedback they get from the algorithm and use it 
to make decisions about whether or not they can rely on it.
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mental models are _sticky_ — once a user has a general idea of how the algorithm 
works, it's really hard to convince them otherwise. 

so the only way to make sure they're getting it correct is by making sure the feedback 
— the answers — they're getting are correct. 

so an algorithm's outputs will exist in this answer space. 

your users begin to develop a model of what are likely outputs given certain inputs. 

and your users will trust it more when it's predictable, when they develop an 
understanding of how input A will turn into output Z. 

A really familiar example is music recommendations
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in spotfiy, apple music, whatever, all these platforms have automated "discovery" 
features. 

and we have a really intuitive sense of how they work — you listen to a lot of music 
of one genre or artist, and it will recommend you similar things. 

the algorithm is providing us feedback via its output about how the things we put in 
(what we listen to)
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generate the things it gives us (what it recommends)

40



This is wonderful and very predictable. People like this algorithm because it gives 
them interesting things and makes their lives easier. And it’s predictable! 

Ask anybody on the street how this works, and they can at least tell you how their 
inputs — the music they listen to — gets transformed into outputs.
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but what if you want it to recommend you something different, more out there? 

the intuitive answer is that you should start listening to a lot of very different music, 

42



but that might not work — we don't really know what's going on behind the scenes. 
we just have to trust our gut instinct about it and hope it works.
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alastair would be very proud.

by showing what's going on — giving people some insight into the rules, even if you 
don't give them _control_ over them — can help them leverage that algorithm even 
more.
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maybe it turns out that it's not listening to different genres a lot in one sitting that 
triggers the algorithm to recommend me new stuff. 

maybe it's changing the frequency — listening to it more times over the week, 
regardless of how long i do it. 

maybe it's how often i skip tracks. 

who knows! wouldn't it be nice if there was a way to find out?
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and this is what i mean about revealing the right complexities. 

the user doesn't need to know that the similarity matrix of two users can be used to 
generate an eigenvalue of confidence that the recommendations are relevant. 

all they want to know is what they have to do to get the kind of recommendations 
they want.

if what we're trying to do is generate an answer space for our users, they'll naturally 
use feedback to do that. 

but we can speed that up by explaining to them what the algorithm is doing. 
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because at their core, algorithms are tools — remember that, because we're going to 
come back to it — and nobody wants to use a tool they don't understand.
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i think bret victor has a really nice way of approaching this. he has this concept of 
"explorable explanations" where you can enter in information and — in real time — 

see what the output is going to be. 

this is so simple but it is immensely powerful, and you can use this on your 
algorithms. think of it like allowing the user to run tiny simulations about things.

The user can modify the inputs and immediately see how the algorithm will 
understand that. 

i work in hearts, so let me give you an example there. 
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so a key part of what a pacemaker has to do is look at the patient’s ECG and make a 
determination: 

is this normal and can I ignore it?

Or is it dangerous, and should I do something about it?
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Now, you can give the user this list of parameters to adjust to help it with that 
detection. Tell the algorithm where and how to look for those dangerous 
arrhythmias.

But even though this gives you control over the algorithm, it gives you no insight. It’s 
really hard to make smart decisions without insight.

50



So we built this system that allows the user to see how the pacemaker is going to 
interpret signals from the heart.

The algorithm are those pink lines there. Every time there’s a spike, there’s a period 
where the system isn’t detecting anything. 

That’s those grey boxes.

By adjusting the parameters on the right, you could adjust the algorithm on the 
overlay and in real-time see how the device would interpret the signals. 

This was really important because this was a brand-new algorithm for a brand-new 
class of devices. 

Nobody really knew how these worked, so we created this so they could experiment 
with them and feel confident in their understanding of how the algorithm worked.
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These are the exact same controls, but now you can immediately understand how 
your decisions will impact the system.

We didn’t modify anything about how the algorithm works — all we did was show 
how it works.
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Aleister hates that.
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So now you may be wondering —

only you can know that. 

you need to understand what it is that your users are trying to do with this tool that 
the algorithm is a part of, 

what they need to do that job well, and what's going to get in their way. 

go out and find out! do your user research on this, and test what you built!
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In this case, we learned that users were trying to get those FS markers to appear 
every time, and ONLY for the big spikes.

What they didn’t want to happen was have a bunch of noise come through and get 
interpreted as something dangerous.

The “IMPORT EPISODE” button down there let them bring in noise to test it out and 
see if their settings worked for these spikes, but not for noise.

so now we have feedback and these explorable explanations. 

another really powerful way of explaining what an algorithm can do comes implicitly 
from the controls you reveal to your users.
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.typically you don't want users to control the entire nuclear facility, but you also want 
them to do more than flick a switch

most algorithms need to be adapted and given some control over how they work. 
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and it gets even more complex — because your users are likely to have a huge range 
of skill and knowledge levels. 

some users might _need_ more control and more access to the inner workings of an 
algorithm, 

but it's probably bad to let a novice get in that deep.
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The things you show and hide give the user an understanding of the space they have 
to operate in and what the algorithm will show them.

These two steering wheels give you radically different insights into the vehicle. 

One lets you turn the car, the other lets you do a lot more. 

They give you immediate, implicit understanding of the complexity of what you’re 
working with. 

The parameters — the controls — you give someone access to so they can tweak an 
algorithm helps them understand what it does. 

Complex systems have more controls. 
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And you have to show some of those controls to your users so they understand what 
they can do

You ever been in a situation where you’re hanging out with your friends and they’re 
like “hey let’s play this game”

and already it’s overwhelming
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And then they sit you down and the controller has like, WAY too many buttons

And you ask “so what am I supposed to do?”
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And they’re like — okay here are the controls, just try to fight us

And you’re like “ooooohkaaaaay”
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And then you start playing and they just absolutely kick your ass because they know 
everything about it and you don’t?
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That’s because your space is way, way too big to operate in. 

But if you have a few handles on what you can do and what the goal is…
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Well all of a sudden you feel a lot better about things. 

Exposing controls to the user gives them critical clues about what the algorithm is 
doing behind the scenes and how they can influence it.
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i mentioned dangerous arrhythmias before — let's dig a little deeper. 

see, most pacemakers have leads in two chambers of the heart. 

the atria up here suck in blood and push it down into the ventricles, which then push 
it out to the rest of the body. 
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that suck-push sequence is very precisely timed — that lub-dub you feel in your 
heartbeat is your atria contracting, then your ventricles contracting.

turns out that if you get that sequence wrong — you contract the ventricle too fast 
after the atrium for example — people's health really degrades. 

it's very important to get that timing bang on.

a very common issue is called AV block — 

basically, the atria will beat and the ventricles will beat, they just don't do it at the 
same time. 

to fix this, you put a lead in the atrium that listens for the beat, and then a lead in the 
ventricle that paces that chamber. 

so the atrium contracts, and the pacemaker forces the ventricle to contract.
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this works really well! but hearts can be really unpredictable — and sometimes the 
atrium will beat in a dangerous way, 

like way too quickly. this is called fibrillation, and in the atrium it's bad. but in the 
ventricle, it's fatal within minutes.
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so if our pacemaker is listening to the atrium and pacing the ventricle at the same 
time, we have a problem if the atrium starts fibrillating. 
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the pacemaker will happily beat the ventricle every time the atrium does — including 
sending those fibrillations down to the ventricle. 

boom, you have a dead patient.

so pacemakers have a lot of very complex algorithms in them that are used to  
respond correctly to those dangerous arrhythmias. 

and they work pretty well out of the box, but everyone is different, so we need to 
give control over them to our users. 

some patients need very little intervention, and some patients are really complex and 
require a _lot_ of tweaking. 

and some of our users are experts with decades of experience working with these 
devices, and others are total novices.

what do we do?
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the thing we _don't_ do is expose everything, even if our power users constantly ask 
for it. 

instead, we basically make it hard to get to the complex stuff that few people need 
and really easy to get to the stuff that most people need a lot.
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a lot of our users only ever need to adjust these rate bands. and these are a great 
example of explorable explanations! let's walk through this screen a little bit.
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the key metric here is the heart rate — generally the faster the rate, the worse off our 
patient is. 

but a really, really fast heart has different treatment needs than a slower one, so we 
give our users three different ways of managing them. 

a moderately fast heart — that's ventricular tachycardia, or VT — is controlled from 
here. A little faster, that’s Fast VT.

a very fast heart — ventricular fibrillation, VF — that's here. 

they're color-coded and you can see how they all line up. you can see what rates are 
going to be covered and if there are any gaps. And if you adjust anything, it gets 
updated here too.

for most people, this is enough! 

this gives them just enough information about the algorithm to understand how it's 
going to respond to different rates, and enough control to adjust it to suit their 
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patient's needs. 

and we did it all with just a little graph! 

now our users don't have to just _faith_ that their patients will get the right 
treatments at the right time, they can actually see it happening.

these controls help demonstrate the space that a user can work in.
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alastair would not like this at all.
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but some users need more control and have the knowledge to go with it. 

so we give them the option, but they have to go digging for it. 

if you click down here, you can see all the things you can do with the algorithm. 

it gives a lot more control, and expands the possibility space. 

the idea here is to give progressively more options to users who are looking for them, 
and protect the ones who aren't from accidentally doing something dangerous. 
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this _progressive complexity_ is really handy because it matches our users' own 
experiences. 

when they start out, they don't know anything and struggle with light switches.
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but as they get more experienced, they need that extra control, and when they go 
and look for it, we give it to them.

our users trust our system because it works consistently — 

the feedback they see is that dangerous things are not happening, and efficacy of 
care is. 

they have enough levers to pull that they can control the system to the level they 
need, based on their patient and their own knowledge. 

and they can see how changes they make will impact their patients in advance.
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what we've done here is more than just build trust in an algorithm, we've actually 
made our users _better at their jobs._ 

the UI — and the algorithm behind it — have enhanced their capability. 

and this is really important, because we're not just building trust that an algorithm 
works. 

we also have to build trust that it's a _good thing._
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all this talk about LLMs has a lot of people worried about what's going to happen to 
their jobs. 

i think it's good to be concerned about this! if we don't think about these things — if 
we just blindly accept them into our lives — we don't really know the outcomes could 
be. 

maybe it'll be a good thing, 

or maybe we’ll ask everyone to take things on faith and wind up inventing a weird 
cult and letting all our buddies die on a mountaintop.
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[grimace] yeesh
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i would like to propose a theory of whether or not LLMs are a good thing that we can 
also apply to algorithms. 
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so for pretty much all of modern human history, if you wanted a sign, someone had 
to write it. 

either you did it yourself or you paid someone to do it. 

you'd put it over the door to your tavern, maybe, or you'd have someone paint on the 
inside of your window so they know what you sold inside.
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signpainting really took off at the turn of the 19th century. hand-painted signs were 
everywhere doing all sorts of jobs. it was a huge industry that died a rapid death 
thanks to this
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And this
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in the 90s and 2000s, suddenly you didn't need to pay someone to paint a sign for 
you. you could write it up yourself on a computer, print it off, and stick it up there 
yourself.

And so when was the last time you hired a sign painter?

sure, maybe these desktop printoffs didn't look as nice, but that didn't really matter. 

they communicated the required information, and they did it basically for free. they 
weren't perfect, but they were _good enough._
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LLMs and [shudder] "AI" are the new desktop publishing platforms. 

they're going to replace the things that we don't need something incredible for. 

the "good enough" stuff. here's a concrete example — this image from my cover slide 
is AI-generated.

I wanted a picture, and the AI did a good enough job.
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LLMs and [shudder] "AI" are the new desktop publishing platforms. 

they're going to replace the things that we don't need something incredible for. 

the "good enough" stuff. here's a concrete example — this image from my cover slide 
is AI-generated.
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This one was too.
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And this one too!
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Here’s the thing about them — they’re just good enough. If I didn’t have a AI tool to 
make them, I just would have gone on google and found something similar. 
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If I want a painting that excites me, if I want a book that moves me, if i want a movie 
that thrills me
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If I want a painting that excites me, if I want a book that moves me, if i want a movie 
that thrills me
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If I want a painting that excites me, if I want a book that moves me, if i want a movie 
that thrills me — I'm going to rely on a human for that. 

But if I need to bang out a boilerplate email to someone and an LLM can do that? hell 
yeah, that's good enough for me. 
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it saves me time. it saves me effort. it becomes an _enhancement_ for me. 

it's like any other good tool: it becomes a part of how i think about and solve 
problems.

and that's what your algorithms should be doing too. They should be enhancing your 
users, not replacing them.
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this idea comes from doug engelbart, an absolute titan in the field of human-
computer interaction. 

he invented the mouse, 
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this idea comes from doug engelbart, an absolute titan in the field of human-
computer interaction. he invented the mouse, the word processor, 
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this idea comes from doug engelbart, an absolute titan in the field of human-
computer interaction. he invented the mouse, the word processor, hypertext
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this idea comes from doug engelbart, an absolute titan in the field of human-
computer interaction. he invented the mouse, the word processor, hypertext, 
networked computers — aka the internet — 
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this idea comes from doug engelbart, an absolute titan in the field of human-
computer interaction. he invented the mouse, the word processor, hypertext, 
networked computers — aka the internet — the graphical user interface
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— and he did it basically all in one presentation. now it's called the "mother of all 
demos." 

go look it up — it's one of those things that's almost not impressive anymore because 
everything he shows is so common now. 

but he was doing it sixty years ago.
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so he had this idea of augmented intelligence. 

if we think of tools as augments to what we can already do — a hammer lets me 
swing with more force and precision than my hand allows —

then a computer should be a tool that augments our intelligence. 

we should be able to think better, filter more data, make more informed decisions — 

the computer should be supporting that by doing all the boring scut work we 
normally have to do.
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if it can do a GOOD ENOUGH job on its own, we can replace a lot of the boring stuff 
with an algorithm. 
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That’s how you build an algorithm. To save your users time and energy.

now they don't have to learn linear algebra to get infinite music recommendations. 

now they don't have to be experts on cardiac electrophysiology to stop someone 
from dying. 

you've taken a hard part of their job and made it easier, and in doing so you've freed 
up their time to do more complex things, more interesting things, the same jobs but 
better.

and this is how you explain it. This is how you build it

algorithms aren't coming for your paycheck, they're coming for your podcasts. 

now all the time you used to spend listening to them while you did mindless things 
for your job are replaced by a computer and you get to focus on the interesting stuff. 
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if there's one other thing i want you to remember from this talk besides crowley, 
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it's this: 

an algorithm is an *enhancement,* not a _replacement,_ for a person.

And you should be building your interfaces with that in mind. 
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we make this palatable to users through developing trust, not faith. 

don't preach about how this algorithm is going to save them time, _show them._ 

show them every time they interact with the system by revealing the right things to 
them, 

giving them the right level of control, 

by letting them see how A turns into Z. 

don't make them crack open the Book of Thoth every time they want answers for 
how the system works. 

think about how angry alastair is going to be when the answers are already provided 
for them.
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i hope i've demonstrated why trust is so essential. 

because sometimes the algorithm is going to give you an output you didn't expect, 
and it's going to be _right._ 

and in that moment, your user is going to have to trust it, because it might be a life-
or-death decision.
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despite our best abilities, things will go wrong. 

an algorithm will make a bad call. 

someone will enter bad data and get bad data back. 

your job as a designer is twofold: it’s to identify what the errors are and make them 
easy for your usrs to idetnfiy
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it's to minimize the likelihood bad things happen, and to make them easy to fix when 
they do.

with an algorithm, this can be surprisingly challenging. 
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the first thing you have to do is come up with a definition: what even counts as an 
_error_ here?
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we have to remember that we're not defining human errors here. 

algorithms don't make mistakes and they don't have slips. 

an error in this case is where there is a difference between
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what the user is _expecting_ the algorithm to provide and what the system actually 
provided.

And let’s be really clear about this for a second — there is a difference between an 
error and an unexpected result.
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Unexpected results are surprises!

[Wait 7 seconds]
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But just because the algorithm did something you didn’t expect doesn’t mean it was 
wrong. 

You have to define what counts as incorrect. And usually, algorithmic errors fall into 
two categories
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_false negatives_ and _false positives_. there are certainly more errors that can 
happen, but this is a nice framework generally.
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a false negative is when the system doesn't do something it was supposed to, and a 
false positive is when it does something it shouldn't have.
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and the really tricky part here is that by definition, the system can't tell that an error 
happened — if it did, then it could have prevented it. 

the only way that an error can be identified is if a human notices — and if the data is 
available.
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• Failed to identify cancer in a radiograph
• Didn’t stop at a stop sign
• Doesn’t recommend a song you would 

have loved

• Identified something as cancer when it 
wasn’t

• Stops in the middle of the freeway
• Recommends your ex’s favorite song



which is why algorithms are tools that ENHANCE, not replace, and we build systems 
we can UNDERSTAND.
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So you got your surprising result. Now it needs to be checked to make sure an error 
didn’t occur.

Someone has to sit down and diagnose the output.
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The first thing you have to do is alert the user that an error even happened. 

This is not always easy — sometimes an algorithm knows when it didn’t work. 

Maybe the input data was bad or outside a range it could work with. 

If the algorithm can tell something went wrong, tell the user and give them some 
advice. 

This is basic error handling stuff I won’t get into here.
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What’s much trickier is when the system made a mistake and it can’t tell. 

The only way to know something went wrong is to provide a backup to the user — 
and have someone looking for it.

You have to present _all_ the outputs of an algorithm to the user, 

which usually means they need some tools to sort through the outputs to get what 
they're looking for.

Most of the time the algorithm does this for you — but when something unexpected 
happens, you need to get in there yourself and take a look
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back in heart-world, we keep track of every time the device detects what it thinks is a 
dangerous heartbeat.

it stores the information about what the heart did, how it classified it, and what 
happened during the event. 

this information is all available, and the user has ways of searching through it to get 
what they need.
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in this case, our users are curious about what happened since they last saw this 
patient, 
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what arrhythmias had shocks, 
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and the specific kinds of rhythms that this patient is likely to have. 

the rest is important, so we still show it, but we don't put it front and center. 

this UI is built around giving the user the tools they need to understand the 
algorithm.
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it can be really tempting to just discard the things we don't really care about. 

If the point of an algorithm is to save the user’s time, we shouldn’t give them the 
option to examine what we discarded, right?
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That’s a very aleister way of thinking.

If you have a 1% failure rate, 99% of the time your users never have to dig through 
the trash.

But in that 1% of cases, it’s vitally important so users can understand what went 
wrong.

126



Usually what you need to show them is 

How the algorithm reached its decision and what it did with what it analyzed

This allows your users to check that everything worked the way it was supposed to 
and confirm that there’s nothing inappropriately ignored.
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Remember, you don’t want to be a black box.

so a huge amount of building trust is not getting rid of stuff and making it easy for 
your users to understand what's going on. 

it's important that users are aware of not only when things work, but also when 
things go wrong. 

it's important when building an answer space to be aware of what the wrong answers 
are just as much as you know about the right ones. 

Black boxes lead to faith, not trust.

Black boxes lead to
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you founding a new religion that kills a guy while his wife drinks animal blood
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Or you getting sued and not being able to defend yourself effectively.

130



keeping a human in the loop is important for another, slightly darker reason: it gives 
you someone to blame when things go wrong. 

let's talk about the trolley problem.
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you probably already know about it — imagine you're a bystander and a trolley is on 
the tracks ahead of you. 

it's running down the tracks and about to hit a big group of people, but you can pull 
the switch so it hits one person instead.

Do you do it?
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let's take this and apply it to self-driving cars. 

the car is in a situation where it's about to hit a wall at high speed — high enough 
that the driver is certain to die when it happens. 

but it could swerve out of the way and barrel into a crowd of people crossing the 
street instead. 

this would kill and maim them, but the driver would survive. 

what should it do?

what should it be _programmed_ to do?

and when a self-driving car is involved in an inevitable fatal accident, who's liable for 
it? 

is it the car company? the person who trusted the car not to kill them?
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is it the person who designed the algorithm?

now, i am not a lawyer or a philosopher, but i think we can all tell that this is murky 
ground with no good, easy answers. 
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and there aren't really any answers out there right now.

there have been a few cases with self-driving cars killing people, but those weren't 
truly autonomous — they had someone sitting in the driver's seat who was supposed 
to take over.

there was a human to blame — and guess what, that human got blamed and went to 
prison for it.
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when it comes to medtech, we usually say the buck stops with the physician. 

we make all sorts of algorithmic recommendations and provide tons of feedback, 

but at the end of the day we absolve ourselves of guilt by requiring a doctor to sign 
off. 

that signature is a transfer of liability from us, the designers and company, to the 
doctor and their malpractice insurance.
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there is an assumption that if we tell our users what the risks are, 

what percentage of false positives and negatives there are, 

they make rational decisions and accept that risk to themselves. 

"5% false negative rate," we say, and the physician is implicitly comfortable with the 
idea. 

but how much of that information is really communicated, and how much is hidden 
away in tiny text? 

when was the last time you saw a system advertised that said ”with our algorithm, 
only a million people every year are falsely cleared from having cancer!" 

we, as human beings, are really bad at assessing risk and thinking about the 
consequences of it. 
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Right now there is basically no precedent for any of this.

But surely the day is coming where a patient dies because an algorithm cleared them 
incorrectly. 

there will be court cases, 

with a physician blaming the system manufacturer and

the company blaming the physician for not paying close enough attention. 

but where is the line? 

if you keep all the outputs the algorithm produced, is that better than deleting them? 

what if you have 1000 negative results, and just five of them are actually false 
negatives? 

is it reasonable to ask your customers to have pored over that data themselves to 
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find it?
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as algorithms become more common, 

we risk overloading our users with data that obscures the real risks to a patient. 

algorithms are intending to help us sift signal from noise, 

but the ironic thing is that we may just be creating new noise to help us hedge our 
bets.

we have a responsibility as designers to make sure that we're not just giving users 
access to _all_ the data, 

but to the _right_ data. and we need to make sure that we help them have insights 
into not just what an algorithm is doing, 

but what it produced. we need to make sure they understand what a 5% risk is, what 
a 10% risk is.

what does that mean for their patients? what does it mean for _them?_
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who wants to go to prison because an algorithm screwed up?
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surely people have been harmed, but i suspect that until now, it's mostly been buried 
in a bunch of other medical and legal data that obscures the root cause. 

right now a lot of us are operating in a space where these aren't concerns because 
the risks are low. errors "just don't happen.” or they aren’t a big deal

but i'd like to amend that.
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error's "just don't happen — yet." 

mark my words, the day is coming where an algorithm is to blame, and when it does, 
it will be a seismic shift in how we use them.
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here's what i want to leave you with today, four key things to think about when 
building interfaces for algorithms.

Trust, not faith. No black boxes! 

Show them how it works, and give them access to the levers that suit their need and 
their ability level

Tell them about errors the system can notice and give them tools to look into 
surprising results

And don’t be Aleister Crowley!
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